336 research outputs found

    Immunity of intersubband polaritons to inhomogeneous broadening

    Full text link
    We demonstrate that intersubband (ISB) polaritons are robust to inhomogeneous effects originating from the presence of multiple quantum wells (MQWs). In a series of samples that exhibit mid-infrared ISB absorption transitions with broadenings varying by a factor of 5 (from 4 meV to 20meV), we have observed polariton linewidths always lying in the 4 - 7 meV range only. We have experimentally verified the dominantly inhomogeneous origin of the broadening of the ISB transition, and that the linewidth reduction effect of the polariton modes persists up to room-temperature. This immunity to inhomogeneous broadening is a direct consequence of the coupling of the large number of ISB oscillators to a single photonic mode. It is a precious tool to gauge the natural linewidth of the ISB plasmon , that is otherwise masked in such MQWs system , and is also beneficial in view of perspective applications such as intersubband polariton lasers

    Proof-of-principle of surface detection with air-guided quantum cascade lasers

    Get PDF
    We report a proof-of-principle of surface detection with air-guided quantum cascade lasers. Laser ridges were designed to exhibit an evanescent electromagnetic field on their top surface that can interact with material or liquids deposited on the device. We employ photoresist and common solvents to provide a demonstration of the sensor setup. We observed spectral as well as threshold currents changes as a function of the deposited material absorption curve. A simple model, supplemented by 2D numerical finite element method simulations, allows one to explain and correctly predict the experimental results

    Electrically injected cavity polaritons

    Get PDF
    We have realised a semiconductor quantum structure that produces electroluminescence while operating in the light-matter strong coupling regime. The mid-infrared light emitting device is composed of a quantum cascade structure embedded in a planar microcavity, based on the GaAs/AlGaAs material system. At zero bias, the structure is characterised using reflectivity measurements which show, up to room temperature, a wide polariton anticrossing between an intersubband transition and the resonant cavity photon mode. Under electrical injection the spectral features of the emitted light change drastically, as electrons are resonantly injected in a reduced part of the polariton branches. Our experiment demonstrates that electrons can be selectively injected into polariton states up to room temperature.Comment: 10 pages, 4 figure

    Fabrication technologies for quantum cascade photonic-crystal microlasers

    Get PDF
    In this paper we describe the technological and fabrication methods necessary to incorporate both photonic and electronic-band engineering in order to create novel surface-emitting quantum cascade microcavity laser sources. This technology offers the promise of several innovative applications such as the miniaturization of QC lasers, and multi-wavelength two-dimensional laser arrays for spectroscopy, gas-sensing and imaging. This approach is not limited to light-emitting devices, and may be efficiently applied to the development of mid- and far-infrared normal-incidence detectors

    Quantum cascade photonic crystal surface emitting injection laser

    Get PDF
    A surface emitting quantum cascade injection laser is presented. Direct surface emission is obtained by using a 2D photonic-band-gap structure that simultaneously acts as a microcavity. The approach may allow miniaturization and on-chip-integration of the devices

    Fabrication methods for a quantum cascade photonic crystal surface emitting laser

    Get PDF
    Conventional quantum cascade (QC) lasers are intrinsically edge-emitting devices with mode confinement achieved via a standard mesa stripe configuration. Surface emission in edge emitting QC lasers has therefore necessitated redirecting the waveguided laser emission using a second order grating. This paper describes the methods used to fabricate a 2D photonic crystal (PC) structure with or without a central defect superimposed on an electrically pumped QC laser structure with the goal of achieving direct surface emission. A successful systematic study of PC hole radius and spacing was performed using e-beam lithography. This PC method offers the promise of a number of interesting applications, including miniaturization and integration of QC lasers

    Time Domain Source Parameter Estimation of Natural and Man-Induced Microearthquakes at the Geysers Geothermal Field

    Get PDF
    Water injection in geothermal areas is the preferential strategy to sustain the natural production of geothermal resources. In this context, monitoring microearthquakes is a fundamental tool to track changes in the reservoirs in terms of soil composition, response to injections, and resource exploitation with space and time. Therefore, refined source characterization is crucial to better estimate the size, source mechanism, and rupture process of microearthquakes, as they are possibly related to industrial activities, and to identify any potential variation in the background seismicity. Standard approaches for source parameter estimation are ordinarily based on the modelling of Fourier displacement spectra and its characteristic parameters: the low-frequency spectral level and corner frequency. Here, we apply an innovative time domain technique that uses the curves of P-wave amplitude vs. time along the seismogram. This methodology allows estimation of seismic moment, source radius, and stress release from the plateau level and the corner time of the average logarithm of P-wave displacement versus time with the assumption of a triangular moment rate function, uniform rupture speed, and a constant/frequency-independent Q-factor. In the current paper, this time domain methodology is implemented on a selected catalog of microearthquakes consisting of 83 events with a moment magnitude ranging between 1.0 and 1.5 that occurred during a 7-year period (2007–2014) of fluid extraction/injection around Prati-9 and Prati-29 wells at The Geysers geothermal field. The results show that the time domain technique provides accurate seismic moment (moment magnitude) and rupture duration/radius estimates of microearthquakes down to the explored limit (M 1) while accounting for the anelastic attenuation effect in the radiated high-frequency wavefield. The retrieved source radius vs. moment scaling is consistent with a self-similar, constant stress drop scaling model, which proves an appropriate attenuation correction and the validity of the assumed, triangular moment rate function for microearthquake ruptures. Two alternative mechanical models are proposed to explain the observed difference (about two orders of magnitude) in the retrieved average stress release estimates between the time and frequency domain methods. We argue that the two quantities may not refer to the same physical quantity representing the stress release of earthquake ruptures. Either the smaller stress release values from the time domain method may indicate a larger fracture area (by a factor of 20) radiating the observed P-waveforms than the one estimated from the corner frequencies, or the frequency domain estimate is a proxy for dynamic stress release while the time domain is more representative of the static release. The latter is associated with a much lower dynamic friction value than static friction value at the fault during the rupture process

    Theory of coherent optical nonlinearities of intersubband transitions in semiconductor quantum wells

    Full text link
    We theoretically study the coherent nonlinear response of electrons confined in semiconductor quantum wells under the effect of an electromagnetic radiation close to resonance with an intersubband transition. Our approach is based on the time-dependent Schr\"odinger-Poisson equation stemming from a Hartree description of Coulomb-interacting electrons. This equation is solved by standard numerical tools and the results are interpreted in terms of approximated analytical formulas. For growing intensity, we observe a redshift of the effective resonance frequency due to the reduction of the electric dipole moment and the corresponding suppression of the depolarization shift. The competition between coherent nonlinearities and incoherent saturation effects is discussed. The strength of the resulting optical nonlinearity is estimated across different frequency ranges from mid-IR to THz with an eye to ongoing experiments on Bose-Einstein condensation of intersubband polaritons and to the speculative exploration of quantum optical phenomena such as single-photon emission in the mid-IR and THz windows
    • …
    corecore